Preclinical Evaluation of Cellular and Gene Therapy Products

Mercedes A. Serabian, M.S., DABT FDA/CBER/OCTGT

Workshop on Counter Terrorism Products Regulated by CBER: Effective Strategies to Assist in Product Development

October 23, 2003
Bethesda, MD
serabian@cber.fda.gov

Requirements for Therapeutic Agent Approval

- Product development/characterization
 - Manufacturing & QC issues
- Toxicology/pharmacology development
 - in vitro and/or in vivo "proof-of-concept"
 - Acute & long-term testing designed to determine safety for clinical use
- Clinical development
 - Demonstration of safety & effectiveness in controlled clinical trials

Requirements for Therapeutic Agent Approval: Per the Animal Rule*

- Product development/characterization
 - Manufacturing & QC issues
- Toxicology/pharmacology development
 - in vivo "proof-of-concept"
 - Acute/long-term testing designed to determine safety for clinical use
 - *New Drug & Biological Products: Evidence Needed to Demonstrate Effectiveness of New Drugs When Human Efficacy Studies are not Ethical or Feasible; FR 67:

37988-37998, 5/31/02

The Bottom Line...

Prior to the availability of human data, preclinical studies provide the sole source of data upon which activity [efficacy] & safety assessments are made

Goals of Preclinical Safety Evaluation

- Preclinical considerations for Phase 1/2 trials
 - To discern the mechanism of action [activity/toxicity]
 of the agent
 - Recommendation of initial safe dose & dose escalation scheme in humans
 - Identification of potential target organ(s) of toxicity/activity
 - Identification of parameters to monitor clinically
 - Identification of patient eligibility criteria
 - Terminate potentially unsuccessful development programs

Achievement of Goals for All Products – CBER/OCTGT/PTB

- "Pre-pre-IND" discussions..which lead to ...
- Pre-IND meetings
 - Establish safety of the product & intended pharmacological action
 - Preclinical safety issues
 - Preclinical "proof-of-concept"
 - Rationale for starting human dose
- Submission of IND

Pre-pre-IND Process

- Non-binding, informal scientific discussions between FDA and sponsor
 - Via telecons
 - Via CBER attendance at scientific meetings/workshops
 - Via outreach presentations (i.e., this workshop)
- Often minimal pre-read materials submitted by sponsor
- Targeted discussion of specific issue of interest
- Allows for information exchange a "two-way street"

Pre-IND Process

- Non-binding, <u>but formal</u> meeting between FDA and sponsor
- Pre-read materials must be submitted by sponsor <u>at</u> <u>least 30 days</u> prior to meeting
- Formal minutes generated by FDA sent to sponsor within 30 days after meeting
- Meeting emphasis summary <u>data</u> and sound scientific principles to support use of a specific product in a specific subject population

The IND Review Process - Team Concept

- Regulatory project manager (RPM)
- Product reviewer (CMC)
- Preclinical reviewer (P/T)
- Clinical reviewer
- Biostatistics reviewer (when applicable)
- Consult Reviewer (when applicable)

How Are Animal Studies Integrated into the Proposed Clinical Plan?

• 21 CFR, part 312.23(a)(8)

Pharmacologic & Toxicologic Studies

- "...adequate information about the pharmacological & toxicological studies...on the basis of which the sponsor has concluded that it is reasonably safe to conduct the proposed clinical investigations. The kind, duration, & scope of animal and other tests required varies with the duration & nature of the proposed clinical investigations."

OCTGT-Regulated Products: Application of 21 CFR 312.23

Repair, Replace, Restore, Regenerate

- Somatic cell therapy
 - Gene therapy
- Xenotransplantation/therapy
 - Device + biologic*
 - Stem cell selectors*
 - Tumor vaccines

Definition of Gene Therapy:

Introduction into the human body of genes or cells containing genes foreign to the body for the purposes of prevention, treatment, diagnosis or curing disease

Definition of Somatic Cell Therapy:

Administration to humans of:

- Autologous, allogeneic, xenogeneic cells
- Manipulated/processed to change their biological characteristics
 - Metabolic
 - Pharmacologic
 - Immunologic
- Not genetically modified

Preclinical Evaluation

- "Traditional" biologics vs. cellular & gene therapy agents
 - Similar general requirements for safety
 - Pharmacologic profiles
 - "Proof-of-concept"
 - Dose-response relationship
 - Toxicology profile

Preclinical Evaluation – Cellular & Gene Therapy Agents

• BUT... the approach by which safety data are obtained will differ

|--|

Animal models

Biodistribution of vector Kinetics of gene expression Migratory potential
Cellular differentiation
Cell phenotype expressed
Anatomic/functional integration
into host physiology
Post-transplant survival

Long-term toxicity
Reproductive toxicity

Carcinogenicity/mutagenicity

Tumorigenicity (proliferative potential)

And...It's Not that Simple...

- Cellular Therapies
 - Infused*
 - Surgically implanted
 - Solid support (CBER + CDRH)
 - Encapsulated material (CBER + CDRH)
 - Aggregated form
- Gene Therapies*
- Cellular Therapy + Gene Therapy*

^{*} May/may not require the use of an experimental delivery device

Regulatory Expectations for Toxicology Studies

21 CFR 312.23 – IND Content and Format

- Preclinical data should be adequate to support the proposed clinical trial
 - Range of doses, schedule and/or duration of treatment,
 route of administration should mimic those planned for the clinic
 - Sufficient safety data should be available to determine endpoints for monitoring in the clinic

The First Step... Pharmacology Studies

- What is the ability of a test article to induce the desired pharmacologic/biologic effect?
- Data may come from in vitro or in vivo studies, or both
 - Randomization/blinding/controls
- Demonstration of pharmacologic activity is the first step in the development of ANY new drug or biologic
- Collect safety data in the animal model of disease

Goals of Preclinical Pharmacology Studies

- Establish basis for conducting clinical trial
 - Feasibility/establishment of rationale
 - Kinetics of gene expression [for genetically modified products]
 - Pharmacodynamic effect extent of functional correction
- Establish dose-response relationship MED/OBD
- Optimize ROA/dosing regimen
- Rationale for species/model selection for further tests

Selection of Animal Species/Model

- Use of relevant species/model
 - Traditional
 - Normal animals; rodent & non-rodent
 - Non-traditional
 - Spontaneous disease
 - "Non-spontaneous" disease (induced, challenge)
 - Genetically modified animals
 - "Humanized" animals
 - Understand the limitations of the species/model
 - Availability, size, gender/age, housing needs, cost, ACUC concerns, technical feasibility, historical data, statistical limitations

Selection of Animal Species/Model

- Identify relevant model
 - Relevance to the specific clinical condition
 - Affect of disease on product
 - Increased sensitivity good or bad?
 - Relevance to the therapeutic agent
 - Affect of product on disease
 - Exacerbation of current condition
 - Induction of new disease
- Use the data to support clinical use risk/benefit

Use of Animal Models: Assessing Predictive Value

Animal*	Human**	Predictive?	
		<u>Activity</u>	<u>Toxicity</u>
Finding	Finding	=	
No finding	No finding		abla
No finding	Finding	\mathbf{X}	X
Finding	No finding	X	?

^{*} Multiple of human dose

^{**} Human effective dose

Assessment of Safety/Activity -"Disease" Models

Relevant Animal Model(s)

[Efficacy & Safety]

Sources of Preclinical Pharmacology Data

- Data in support of clinical trial can come from:
 - Well-controlled studies conducted in house
 - Published data in peer-reviewed journals
 - Cross-reference to similar products in previously submitted MF/INDs

Preclinical Safety Evaluation - Focus

- How can toxicological data derived from preclinical models provide information for the clinical management of potential toxicities?
 - Preclinical ID of specific toxicities = requirement for clinical monitoring
 - Predictiveness of the toxicology data for the human response
 - Impact on clinical development

The Next Step... Toxicology Studies – Gene Therapy

- Evaluate single/repeat exposure to the vector product
 (V)
 - Toxicities related to the delivery system
- Evaluate the safety of gene expression (T)
 - Persistence, level of expression in vivo
 - Identify target tissues/functional endpoints
 - Delayed toxicities/reversibility of toxicities
- Evaluate V + T
 - Characterize general toxicities
 - Identify specific toxicities
 - Characterize dose/exposure NOAEL, MTD

The Next Step... Toxicology Studies – Cellular Therapy

- Evaluate the safety of the implanted cells (C)
 - Use cells intended for clinical use
 - May have to use non-human cells in analogous species
 - Influence of local microenvironment
 - Cell differentiation
 - Cell phenotype expression
 - Cell migration in vivo
 - Identify target tissues/functional endpoints
 - Delayed toxicities/reversibility of toxicities
 - Characterize general toxicities
 - Identify specific toxicities
 - Characterize dose/exposure NOAEL, MTD

CBER Guidance – Endpoints Gene Therapy

- Emphasis on clinically relevant endpoints/ surrogate markers – e.g., angiogenic factor
 - Activity
 - Increased formation of collateral vessels
 - [Cardiac] Improved myocardial function (perfusion, flow, wall thickening)
 - [Peripheral] Increased vascular/capillary density to the ischemic limb
 - Presence of transgene in target tissues
 - Toxicity local/systemic effects
 - Injection site rxn
 - Hypotension
 - Biodistribution/persistence of vector in nontarget tissues
 - Formation of Abs to vector/transgene
 - Acceleration of atherosclerosis
 - Inflammatory response in target/nontarget tissues

Preclinical Study Design – Vector Biodistribution

- Determination of distribution of the vector to intended therapeutic site/unintended site(s)
 - Presence of vector sequence via PCR analysis:
 - Dissemination of vector to the germline
 - Distribution of vector to non-target tissues
- Performance of biodistribution studies prior to Phase 1 when:
 - A new class of vector; no/little experience
 - A change in formulation
 - A change in the ROA w/ an established vector
 - Known potential of transgene to induce toxicity if aberrantly expressed in non-target tissues

CBER Guidance – Endpoints Cellular Therapy

- Emphasis on clinically relevant endpoints/ surrogate markers – e.g., cells (osteogenic/ dermal) + matrix
 - Activity
 - Contribution of each component
 - Graft performance -morphological/functional aspects
 - Effect of antimicrobial agents on graft performance
 - Time to/extent of engraftment
 - Prevention of morbidity
 - Toxicity local/systemic effects
 - Contribution of each component
 - Implant site rxn Biodegradation of matrix
 - Ectopic bone formation Tumorigenicity
 - Formation of Abs to any foreign proteins
 - Inflammatory response in target/nontarget tissues

Regulatory Expectations for Toxicology Studies

- 21 CFR 312.23 (a)(8) Pharmacology & toxicology
- For each toxicology study intended primarily to support safety, a full tabulation of data should be submitted
- Each study submitted should be performed per GLP, or an explanation provided

Sources of Toxicology Data

- Toxicity data in support of a clinical trial can come from:
 - GLP-compliant toxicology studies conducted by a contract laboratory
 - Well-controlled studies conducted in house
 - Published data in peer-reviewed journals
 - Cross-reference to similar products in previously submitted MF/INDs

The Bottom Line....

- Study design should answer specific questions regarding product safety/activity, using the relevant animal species/model
 - Determine a bioactive level (MED) & a safe level (NOAEL)
 - Determine margin of safety toxic effect(s) vs.
 beneficial effect(s) for the product
 - Determine a safe starting clinical dose/dose escalation scheme

[Some] Limitations of Preclinical Studies

- Lack of information/understanding regarding fundamental biochemical and physiological mechanism of axn
- Target site/receptor absent in test species
- Treatment does not lead to sufficiently sustained protein concentrations at target site
- Lack of available animal model(s) of disease
- Extrapolation to relevant physiological state

Findings Resulting in Possible Modification to Clinical Trial(s)

- Serious life-threatening events
- Unexpected toxicities
- Delayed effects
- Irreversible effects
- Additional findings in long-term studies
- Enhanced toxicity in an animal model of disease
- Similar adverse findings displayed in several models
- Tumor development

CBER Approach to Preclinical Safety Evaluation – for All Products

- Data-driven
- Problem-solving, creative
- Should be based on best available science, technology to date
- Careful design of preclinical studies results in judicious use of animals

- The most useful approach to preclinical safety evaluation of cellular & gene therapies should:
 - Utilize rational, scientifically-designed, & problem-solving study designs
 - Be based on the best available technology/ methods
 - Follow FDA guidances, ICH, & the CFR
 - Include the judicious use of animals

• Sponsors are encouraged to utilize relevant animal species & animal models of disease in preclinical studies

...keeping in mind that..

• No one species will be representative or predictive for all humans [including humans]

- A better understanding of fundamental & physiological mechanisms will help to provide a scientific basis for safer & faster clinical development
- The goal: To avoid inappropriate use of the product
- The goal: To optimize the predictive value of the product

• Sponsors should contact CBER at an early stage of preclinical development to discuss study designs to answer the necessary questions

 Early and frequent interactions with CBER P/T reviewers are encouraged

For Additional Information...

• Guidance for Industry: Providing Evidence of Effectiveness for Human Drug and Biological Products

http://www.fda.gov/cber/guidelines.htm

- Guidance for Human Somatic Cell Therapy and Gene Therapy http://www.fda.gov/cber/gdlns/somgene.pdf
- ICH Documents http://www.fda.gov/cber/guidelines.htm

The CBER Connection...

Pharm/Tox Branch OCTGT/DCEPT

(301) 827-5102 [phone] (301) 827-0910 [fax]

